
LabVIEW

Dr Marko Dimitrijević

Objektno orijentisano
programiranje

Objektno orijentisano programiranje

• Objektno orijentisano programiranje
• Prednosti OOP
• OOP razvoj virtuelnih instrumenata u LabVIEW

Objekno orijentisano programiranje

• Objektno orijentisano programiranje je pristup razvoju aplikacija
• OOP je pogodan za razvoj aplikacija i projekata koje realizuje veliki broj

programera

Presenter
Presentation Notes
OOP is really an approach to application development, similar to functional programming and other types of application development. For LabVIEW customers and users, it’s really geared more towards large-scale application development, where there might be teams of developers who will need to be able to coordinate and reuse code. It really builds on top of the advancements made for large-application development in LabVIEW 8.0.

Prednosti OOP

Prednosti obijektno orijentisnog programiranja (OOP)

• OOP omogućuje ponovnu upotrebu napisanog kôda (code reuse)
• Umanjuje potrebu za izmenom kôda i kompleksnost
• Pojednostavljuje proširenje funkcionalnosti aplikacija

5

Presenter
Presentation Notes
The benefits you will generally hear associated with OOD are that it promotes code reuse, and reduces code maintenance and complexity. It also makes it easier to extend applications. A lot of these benefits are things that we have always known are available through modular development and best practices of LabVIEW development. OOP does add new things such as dynamic dispatching, which we’ll discuss later on in this presentation that you can’t do in traditional LabVIEW programming.

Modularno programiranje u LabVIEW

Modularno programiranje u LabVIEW je podržano:

• Virtuelnim instrumentima i subVI
• Bibliotekama – Project Library (od LabVIEW 8)
• Klasama (od LabVIEW 8.20)

6

Presenter
Presentation Notes
Modular development has been something that as application developers, we have promoted all of the time. Since the earliest versions of LabVIEW, we have had sub-VI’s, being able to create a VI that can be called in multiple places from other VI’s. In LabVIEW 8.0, we introduced the project libraries to be able to manager related sub-VI’s more easily. LabVIEW 8.20 introduces classes and OOP.

• SubVI povećavaju čitljivost i laku izmenu kôda.
• SubVI se koristi kada:

– Se isti kôd javlja više puta na blok dijagramu,
– Blok dijagram postane složen, nepregledan i veliki,
– Se u aplikaciji koriste Sequence strukture

SubVI

7

Presenter
Presentation Notes
Sub-VI’s not only help to improve code readability, but also maintainability. So, if I’m performing the same function multiple times on the block diagram, I can create a sub-VI. It helps make the block diagram a little clearer. But, what it enables me to do is that if I ever find an error in that code, I can make the change in one place, and I know that all of the places the code is being used will be updated automatically.

Whenever possible, use subVIs improve code readability and may make dataflow more obvious without hurting performance. They cut down on code duplication, which can actually improve performance.

Sequence structures indicate a VI that is trying to do too much. Commonly, the first frame might do initialization, the second execution, and the third cleanup. Make these into separate subVIs. Your block diagram will be much more readable. And your VI will have more cohesion – each subVI does one piece of the larger task. If there is a bug in initialization, you know it is in one subVI, rather than thumbing through all the panes of a sequence structure.

Biblioteke – Project Library

• Biblioteke su kolekcije
povezanih virtuelnih
instrumenta i ostalih
pomoćnih fajlova (globalnih
promenljivih, kontrola, itd.)

• Biblioteke su smeštene u
tekstualne fajlove sa
ekstenzijom *.lvlib

8

Presenter
Presentation Notes
LabVIEW 8.0 introduced the project library to address a couple of limitations with just sub-VI’s. What we were able to do with project libraries is group together related VI’s and other LabVIEW files. In this in the bottom right, we can see a project library for an instrument driver. This instrument driver is for the Tektronix TDS 3000 series. We can see that all of our data VI’s are grouped under a folder and our action VI’s are grouped together under a folder. In addition, at the bottom of the project library, we can see VI’s with a red key next to them. These are private VI’s. This means that they can only be called by other VI’s that are part of this library. This helps us define an interface for our library that means if somebody is using this as part of a large application, they can’t call the private VI’s. That means as a developer or owner of these pieces of code, I can make changes to these VI’s without worrying about breaking the code of my clients.

To facilitate the creation of modules from sets of VIs, LabVIEW 8 provides a new type of structure - the project library. The project library provides a mechanism for logically grouping LabVIEW VIs and other LabVIEW files. Information on the files that belong to a project library is stored in a human-readable text library file with a .lvlib extension. VIs and other LabVIEW files in a project library also contain information on the library to which they belong. LabVIEW files like VIs can only belong to one project library at a time.

Prednosti biblioteka

• Smanjeni su konflikti sa
imenima
– Svaka biblioteka ima svoj

namespace koji se odnosi na
imena VI

• Restriktivan pristup
virtuelnim instrumentima u
biblioteci
– Javni – Public VIs
– Privatni – Private VIs

• Konzistentna ikona

Public Private

9

Presenter
Presentation Notes
Project libraries also introduced namespace. For example, I might be using an NI Function Generator in addition to the Tektronix scope. I would have one project library for the Tektronix scope and one for the Function Generator. In both of those, I may need to able to initialize my instrument. So, I can have an Initialize.VI in one library and an Initialize.VI in the other library. But, because they are part of the library, the library adds a namespace to it. As I discussed before, you are able to mark VI’s as public or private. Therefore, limiting access to VI’s that you don’t want top-level application developer to call. The other enhancement that the project library added to help increase application development is the default icon. So, by specifying this, any new VI’s created in the library will get this default icon applied as a template to make the process of creating these icons a little faster.

A project library provides two main benefits:

1. Project libraries can restrict access to VIs and other files that belong to the library. Developers can designate VIs and other files in a project library as either public or private. Public members of the library can be called by any VI (no restrictions), but private members of the project library can only be called as subVIs by other members of the same library. This restriction on private VIs ensures that the end-user of the library can only use the public VIs. If changes need to be made to the private VIs later, there is no concern that these changes will break the overall application so long as the public interface is maintained.

2. Project libraries qualify the names of member VIs and other LabVIEW files. A qualified filename includes the filename and the owning project library filename, and helps ensure that the names of the members are unique, especially when the library will be reused in multiple projects that contain several libraries. Project libraries help eliminate the naming collisions that occur when two VIs with the same name are opened at the same time. As long as the identically-named VIs are in different libraries, there will not be a naming conflict

Parent klasa

Child klasa

Inkapsulacija

Klase i objekti

Nasleđivanje

Objektno orijentisano programiranje

10

Presenter
Presentation Notes
LabVIEW 8.20 introduces OOP. The terms you often hear with OOP are being able to create objects and classes. On the right hand side, you can see in the project tree a class is represented by a blue box and then you can see the parent class, which is our cell phone class, has a control which defines its data type. We have a number of VI’s that are implementing the methods of the parent class. The project libraries only let us put VI’s and other files into them. Classes also add in the concept of the data. The control defines the data, and the methods act on that data. This is the concept of encapsulation. In addition, we are illustrating inheritance, where the camera phone class inherits from the parent class, to more easily reuse code. We’ll walk through a real example throughout the rest of this seminar to illustrate these different concepts.

As with other object-oriented languages, you can create new data types with LabVIEW, make use of encapsulation of data and methods and scoping of methods. You can also compose one class with another class and make use of inheritance to create class hierarchies. This functionality helps you develop maintainable, scalable and reusable code.

Let’s see object-oriented development in LabVIEW 8.20 in action by discussing a simple application used to test circuit boards. When we are testing circuit boards we can think of each board being made up of a number of components. And we may have different types of boards such as digital or analog and we want to test these boards within the same application.

(go to demo)

Come back to slide and do summary of the demo and then transition to the next

Klase i objekti

• Objekti su instance klase u aplikaciji
– Odnose se na konkretne podatke

• Klasa određuje podatke u objektu i njegovo ponašanje
– Svi objekti iste klase imaju iste osobine.

11

Presenter
Presentation Notes
Remember your English grammar: A noun is a person, place, thing or idea. In OO Design, we want to identify all the actors in our system. In a robot, for example, we’d have a class for Leg and a class for Body. There are two Leg objects and one Body object. If we had a whole group of monsters, we might have had a Herd object that contained many Body objects. We use the phrase “an object is an instance of a class” to mean that this piece of data (the object) is of this data type (the class). Why not use “data” and “data type”? Because “object” and “class” emphasize the actor nature of the data. And, as we’ll see in a moment, a “class” is richer than just data.

In OO Design, we think of all the bits and bytes in a computer as part of some object. That object has the job of setting the value of those bits.

So classes really define the data, or behavior of objects. Objects are the actors in your application. This is more of a theoretical abstract description, but this will make more sense as we look at an actual example.

OOP – Testiranje mobilnog telefona

• Da bi testirali mobilni telefon i mobilni sa kamerom,
potrebno je testirati mobilni telefon na pozive, a
mobilne sa kamerom na pozive i fotografisanje

• Aplikacija se bazira na konkretne stvari i akcije
– Mobilni sa kamerama su vrsta mobilnih telefona koji imaju i kameru
– Mobini telefoni primaju pozive
– Mobilni sa kamerama primaju pozive i snimaju fotografije
– Da bi testirali mobilni telefon, poziv mora biti primljen i verifikovan
– Da bi testirali mobilni sa kamerom, funkcija telefoniranja i kamere more biti

testirana
– Da bi testirali kameru, fotografija mora biti napravljena i upoređena

referentnom
• Stvari predstavljaju klase i objekte
• Akcije predstavljaju metode

12

Presenter
Presentation Notes
The example we’ll look at is testing cell phones. So, let’s say we’re testing cell phones and camera phones. To test a cell phone, we have to place a call. To test a camera phone, we verify the call as well as the picture functionality. With OOD, we generally break this down into senses that describe this application, with a focus on the entities that are in our applications. In this case, camera phones are types of cell phones that also contain a camera. Cell phones make calls, while camera phones make calls and take pictures. Since this is a test application, to test a cell phone, a call must be placed and verified, and so on. Nouns generally map to a class and you can see all of the nouns highlighted through underlining, and verbs generally map to methods, and those are the bolded and italicized words you see.

Kreiranje klasa u LabVIEW

• Kreirajte prazan projekt
• Dodajte klasu New>>Class
• Specificirajte privatne

podatke klase u *.ctl
– Definisanje klase efektivno

definiše novi tip podataka
• Dodatne osobine klase

– Ikona
– Uzorak za VI ikonu
– Boja veze

13

Presenter
Presentation Notes
To create a class in LabVIEW, it’s done using the project, which was introduced in LabVIEW 8.0. The data type for the class is defined through a .ctl, or control file. In addition, since we’re really defining the data type, some of the powerful things that we can do, besides the VI icon template, is to specify the wire color. So, if I have an object of my cell phone class and I want to place a call on it, and I wire that to the VI that implements the call method, it’ll have the wire color that I specified.

Klase u projektu

14

• Project explorer prikazuje
klase kreirane u projektu
– Cell Phone
– Camera Phone
– Camera
– Smart Phone

• U okviru projekta je i
virtualni instrument
PhoneTester.vi

Privatni podaci klase (Private data)

• Klase
– Cell Phone
– Camera Phone
– Camera
– Smart

• Privatni podaci klase su
definisani u pripadajućoj
kontroli

15

Presenter
Presentation Notes
In our application, we have three classes: cell phone, camera phone, and camera. As I mentioned before, there is a control file associated with each class. This .ctl file specifies the data type. In this case, our cell phone class is defined by the type, whether it’s a GSM phone or CDMA phone.
At this point, run Demo 1 and I’ll walk you through how to demonstrate creating a class and defining the data for a class in LabVIEW 8.20.

Primer metoda – Test.vi

16

Presenter
Presentation Notes
In our application of the cell phone, we have already defined the type of cell phone, and the data for that. In our methods, we will want be able to initialize, turn it on, place a call, verify that call, and test the phone. In our project tree, you’ll see one VI for each method under the cell phone class. You’ll see that the VI icon is slightly different in that there is a small blue box, which indicates that the VI is implementing a method for the class.
At this point, run Demo 2. This will illustrate how to demo this section.

Nasleđivanje (Inheritance)

• Subklase izvedene iz klasa
• Uspostavlja „je“ relaciju između klasa

– Primer: Mobilni sa kamerom „je“ mobilni telefon
– Preuzima uspostavljenu funkcionalnost klase

• Specijalizacija
– Proširuje ili potiskuje funkcionalnost u skladu sa specifičnim potrebama

17

Presenter
Presentation Notes
Inheritance is a way to define a subclass. For example, you may want to create classes which represent types of geometric shapes. You could have a class which is simply called “Shape”. You would want to have other classes—Polygons, Ellipses, etc.—inherit from Shape. Furthermore, you may want Circle to inherit from Ellipse, Rectangle to inherit from Polygon, and Square to inherit from Rectangle.

In each of these cases, the inherited class, which we usually refer to as a “derived class”, is a more specific type of the class from which it inherits, which we call a “base class”. That is why we say inheritance creates an “is a” relationship, because a polygon is a shape, a circle is an ellipse, etc.

Derived classes inherit all the attributes and behaviors of the base class. This means that you can call a base class method on an object which is of the derived type. In addition, you can further specialize the derived class by adding new behavior or by overriding the behavior provided in the base class. For instance, our Square class would want to have additional code to verify that all sides are the same length.

So far, we have focused on one class, and how to implement that class’s methods. Inheritance is a key element of OOD in that it helps us reuse code. It is used to define a relationship between the different classes. When we consider our application, a camera phone is a cell phone. It shares many of the same functionalities, such as turning it on, placing a call, etc… In our application, we’d like to be able to reuse as much of the implementation as possible. However, there are specialized elements of the camera phone, such as the camera itself, that we will need to be able to implement specific code for.

Testing Cell Phones – Inheritance

Klasa Camera Phone
– Nasleđena iz Cell Phone

klase
– Podaci

• Kamera
– Metodi

• Test – proširuje “Cell
Phone Class” Test.vi
metod radi testiranja
funkcionalnosti kamere

18

Presenter
Presentation Notes
When we define this relationship, we say that the camera phone inherits from a cell phone, and has a method to test it that extends the cell phone class. When we look at the project tree, we can right-click on camera phone, and show the class hierarchy by selecting Show Class Hierarchy. This shows the class hierarchy relationship defined through inheritance. In the center, we have the cell phone class. At the bottom, we have the camera phone class that inherits from it. If we look at code reuse, we can see the “Turn On” VI implementing that method as highlighted. We don’t see that under the camera phone. That means if we ever drop a camera phone object in our application and want to call “Turn On”, we just drag that top VI and it will automatically make use of it. So, it’s a very nice way to be able to reuse that code and modularize it. The thing we do see repeated in both places is the Test.VI. For the camera phone, we have to also test the camera functionality as well as the phone itself. Therefore, the camera phone Test.VI will override the Test.VI inherited from the camera class.
Go ahead and run Demo 3 to see how you can show the use of inheritance.

Nasleđivanje

19

Inkapsulacija

• Tretira objekte kao crne kutije (blackbox)
– Metodi i iterfejsi objekta su definisani
– Interfejs se mora koristiti u aplikaciji

• Svi prodaci su private tipa
• Metodi mogu biti public, private, or protected

20

Presenter
Presentation Notes
Encapsulation is hiding details from objects that don’t need to know those details. This is sometimes also referred to as Implementation Hiding or Information Hiding. The idea behind it is that you want to provide a well-defined interface to the functionality of your objects. From there, the implementation can change as the programmer sees fit, without changing the logic of the program using the objects.

Most Object-Oriented languages provide different levels of access to the pieces of classes. The three listed in the slide are the most common. If data or methods are public, they can be accessed from anywhere in the system. If they are private, they can only be accessed from within methods of the same class in which they are defined. Protected, in the middle, means that they can only be accessed from within the same class, or any derived class, but are private to any other class.

Encapsulation improves maintenance efforts not only because the implementation is hidden from outside of the class, but because the language enforces private and protected membership, you can be sure all entry points to those functions are in the class (or its descendents), so it’s a much easier task to find and test functionality that might be affected by changes in those private pieces.

By creating the data and the methods that operate on a given object defined by the class, we are making use of a concept called encapsulation. We treat each object as a block box. There is a well-defined interface. Here is my data that defines my class, all my data is private. I then have to provide you with a method to get and set each data values in order to access them, and I can use that to control that access. In addition, since methods can be public, private, or protected, I can ensure that you don’t call a Utility VI that isn’t intended for a top-level application to call.

Inkapsulacija – metodi

• Top-level aplikacija jedino
mora da inicijalizuje mobilni i
testira ga
– CellPhoneInit iTest metodi su

javni

21

Presenter
Presentation Notes
Encapsulation is hiding details from objects that don’t need to know those details. This is sometimes also referred to as Implementation Hiding or Information Hiding. The idea behind it is that you want to provide a well-defined interface to the functionality of your objects. From there, the implementation can change as the programmer sees fit, without changing the logic of the program using the objects.

Most Object-Oriented languages provide different levels of access to the pieces of classes. The three listed in the slide are the most common. If data or methods are public, they can be accessed from anywhere in the system. If they are private, they can only be accessed from within methods of the same class in which they are defined. Protected, in the middle, means that they can only be accessed from within the same class, or any derived class, but are private to any other class.

Encapsulation improves maintenance efforts not only because the implementation is hidden from outside of the class, but because the language enforces private and protected membership, you can be sure all entry points to those functions are in the class (or its descendents), so it’s a much easier task to find and test functionality that might be affected by changes in those private pieces.

If you look at the implementation of encapsulation, let’s assume our top-level application only needs to be able to initialize and test those cell phones. So, we leave those as public methods. A method such as turning on the cell phone may only be required to write the test. Therefore, you see the yellow key next to the Turn On.VI to mark it as protected. This means that my camera phone class, which is part of the same hierarchy, will be able to call it.
At this point, run the video demonstrating how to demo encapsulation.

Struktura klase

• Definisanje klase kreira novi tip podataka
• Klase mogu sadržati druge klase kao private podatke
• Klasa Camera Phone sadrži klasu Camera

22

Presenter
Presentation Notes
Classes also let you define a completely new data type. When we create a new class, we are in essence defining a totally new data type. What we are able to do is create a class that is made up of other classes, and not just LabVIEW data types.

Struktura klase

• Camera Phone klasa
– Nasleđena od Cell Phone
– Podaci

• Camera Class
– Metodi

• Test (Cell Phone i Camera)
• Camera Class

– Podaci
• Camera Type

– Metodi
• Take Image
• Verify Image
• Test Camera

23

Presenter
Presentation Notes
In this application, we have the camera phone class. The camera phone is made of up a camera. In that regard, when we look at the project tree for the camera phone, and we look at its control, we can see in the cluster that we have dropped a camera object. So, if we want to test the individual functionalities of the camera or take an image, we can just unbundle that data from within our VI and camera phone class, and call it.
Go ahead and run the next VI to show you how this is done.

LabVIEW aplikacija sa klasama

• Pozivi objekata i metoda u blok dijagramu
• Smanjuje intervencije i izmene na kôdu korišćenjem nasleđivanja

24

Presenter
Presentation Notes
We’ve gone through a fairly simple exercise of taking a theoretical cell phone and camera phone test application and created our class hierarchy. In the end, the goal is to develop the top-level application that would make use of this. With inheritance and dynamic dispatching, we can make extending of our top-level application easier to do as new requirements arise.

Testiranje – poziv metoda Test.vi

25

Presenter
Presentation Notes
We’ll go ahead and illustrate this idea in the last demo.

Testiranje – poziv metoda Test.vi

26

Presenter
Presentation Notes
We’ll go ahead and illustrate this idea in the last demo.

Pregled

• Objektno orijentisano programiranje umanjuje potrebu za izmenom kôda
i kompleksnost, pojednostavljuje proširenje funkcionalnosti aplikacija

• Osnovne paradigme su klase i objekti. Objekt predsavlja konkretnu
instancu klase.

• Podaci u okviru klase su private tipa. Metodi mogu biti public, protected i
private.

• Metod predstavlja akciju koju sprovodi objekat
• Nasleđivanje omogućava proširenje funkcionalnosti klase (objekta) bez

ponovnog programiranja.

27

Presenter
Presentation Notes
We’ll go ahead and illustrate this idea in the last demo.

	LabVIEW
	Slide Number 2
	Objektno orijentisano programiranje
	Objekno orijentisano programiranje
	Prednosti OOP
	Modularno programiranje u LabVIEW
	SubVI
	Biblioteke – Project Library
	Prednosti biblioteka
	Objektno orijentisano programiranje
	Klase i objekti
	OOP – Testiranje mobilnog telefona
	Kreiranje klasa u LabVIEW
	Klase u projektu
	Privatni podaci klase (Private data)
	Primer metoda – Test.vi
	Nasleđivanje (Inheritance)
	Testing Cell Phones – Inheritance
	Nasleđivanje
	Inkapsulacija
	Inkapsulacija – metodi
	Struktura klase
	Struktura klase
	LabVIEW aplikacija sa klasama
	Testiranje – poziv metoda Test.vi
	Testiranje – poziv metoda Test.vi
	Pregled

